Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 348
1.
Fitoterapia ; 174: 105857, 2024 Apr.
Article En | MEDLINE | ID: mdl-38354821

Mauritia flexuosa, known as buriti in Brazil, is a widespread palm tree in Amazonia. It has many ethnobotanical uses, including food, oil, and medicine. The oil obtained from buriti's fruit pulp has high levels of monounsaturated fatty acids, carotenoids, and tocopherols, and is used in the food, cosmetic, and pharmaceutical industries for its antioxidant properties. Many biological activities have been reported for buriti oil, such as antioxidant, antimicrobial, chemopreventive, and immunomodulatory. Due to its high content of bioactive compounds, buriti oil is considered a functional ingredient with possible benefits in preventing oxidative stress and chronic diseases, particularly in the gastrointestinal tract. Peptic ulcer disease is a multifactorial disorder, involving lesions in the stomach and duodenum mucosa, which has a complex healing process. In this context, some nutrients and bioactive compounds help the maintenance of gastrointestinal mucosal integrity and function, such as carotenoids, tocopherols, and unsaturated fatty acids, which makes buriti oil an interesting candidate to be used in the prevention and management of gastrointestinal diseases. This study aimed to evaluate the gastroprotective and antiulcer effects of buriti oil and its possible mechanisms of action. Buriti oil reduced the ulcerative area and lipid peroxidation induced by ethanol. The gastroprotective activity of buriti oil partially depends on nitric oxide and sulfhydryl compounds. In acetic acid-induced gastric ulcers, buriti oil accelerated healing and stimulated the formation of new gastric glands. These results demonstrated the potential of buriti oil as a functional ingredient to promote health benefits in the gastrointestinal tract.


Antioxidants , Arecaceae , Plant Oils , Antioxidants/pharmacology , Health Promotion , Molecular Structure , Carotenoids/pharmacology , Tocopherols/pharmacology
2.
BMC Plant Biol ; 24(1): 108, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38347449

Soil pollution with heavy metals has grown to be a big hassle, leading to the loss in farming production particularly in developing countries like Pakistan, where no proper channel is present for irrigation and extraction of these toxic heavy metals. The present study aims to ameliorate the damages caused by heavy metal ions (Hg-Mercury) on rapeseed (Brassica napus L.) via a growth regulator (α-tocopherol 150 mg/L) and thermopriming technique at 4 °C and 50 °C to maintain plant agronomical and physiological characteristics. In pot experiments, we designed total of 11 treatments viz.( T0 (control), T1 (Hg4ppm), T2 (Hg8ppm), T3 (Hg4ppm + 4 °C), T4 (Hg4ppm + 4 °C + tocopherol (150 m/L)), T5 (Hg4ppm + 50 °C), T6 (Hg4ppm + 50 °C + tocopherol (150 mg/L)), T7 (Hg8ppm + 4 °C), T8 (Hg8ppm + 4 °C + tocopherol (150 mg/L)), T9 (Hg8ppm + 50 °C), T10 (Hg8ppm + 50 °C + tocopherol (150 mg/L) the results revealed that chlorophyll content at p < 0.05 with growth regulator and antioxidant enzymes such as catalase, peroxidase, and malondialdehyde enhanced up to the maximum level at T5 = Hg4ppm + 50 °C (50 °C thermopriming under 4 ppm mercuric chloride stress), suggesting that high temperature initiate the antioxidant system to reduce photosystem damage. However, protein, proline, superoxide dismutase at p < 0.05, and carotenoid, soluble sugar, and ascorbate peroxidase were increased non-significantly (p > 0.05) 50 °C thermopriming under 8 ppm high mercuric chloride stress (T9 = Hg8ppm + 50 °C) representing the tolerance of selected specie by synthesizing osmolytes to resist oxidation mechanism. Furthermore, reduction in % MC (moisture content) is easily improved with foliar application of α-tocopherol and 50 °C thermopriming and 4 ppm heavy metal stress at T6 = Hg4ppm + 50 °C + α-tocopherol (150 mg/L), with a remarkable increase in plant vigor and germination energy. It has resulted that the inhibitory effect of only lower concentration (4 ppm) of heavy metal stress was ameliorated by exogenous application of α-tocopherol and thermopriming technique by synthesizing high levels of proline and antioxidant activities in maintaining seedling growth and development on heavy metal contaminated soil.


Brassica napus , Metals, Heavy , Soil Pollutants , Antioxidants/metabolism , alpha-Tocopherol/pharmacology , alpha-Tocopherol/metabolism , Brassica napus/metabolism , Mercuric Chloride/toxicity , Mercuric Chloride/metabolism , Tocopherols/metabolism , Tocopherols/pharmacology , Metals, Heavy/metabolism , Proline/metabolism , Soil Pollutants/metabolism
3.
Fitoterapia ; 172: 105707, 2024 Jan.
Article En | MEDLINE | ID: mdl-37866421

Dittrichia viscosa belongs to the Dittrichia genus, it grows abundantly in the east and northeast of Morocco, and traditionally its fresh leaves are crushed and given for topical application after burns, wounds, and infections. In this study, we examine the wound-healing activity of Dittrichia viscosa lipidic extract in vivo, assess its anti-microbial effect, and explore the specific compounds that contribute to these effects. To assess the effectiveness of wound healing, a burn-induced wound model was employed in Wistar rats, and the levels of hydroxyproline as well as histopathological changes in the skin tissues were evaluated. Furthermore, the antimicrobial potential against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, Candida glabrata, and Malassezia furfur was investigated using the agar disc diffusion method. Gas Chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) techniques were employed to analyze the composition of fatty acids, phytosterols, and tocopherols. Topical application of Dittrichia viscosa lipidic fraction ointment exhibited significant improvements in wound contraction, achieving an impressive rate of 82% within 21 days. Additionally, the lipidic extract of Dittrichia viscosa displayed notable efficacy against various microbial strains, including Candida albicans (25.07 ± 0.2), Candida glabrata (24 ± 0.6), and Malassezia furfur (22 ± 0.7). The primary fatty acids identified in the sample were linolenic acid (58.95% ± 0), oleic acid (16.75% ±0.04), and linoleic acid (11.97% ± 0.1). Notably, the sample contained significant amounts of γ-Tocopherols (732.08 ± 21mg/kg), while the sterol fraction primarily consisted of 7-Campesterol (1937 ± 0 mg/kg), 7-ß-Sitosterol (1621 ± 0 mg/kg), and Stigmasterol (1439 ± 26 mg/kg). By its richness in active compound content, Dittrichia viscosa effectively accelerates wound healing while safeguarding against microbial infections.


Anti-Infective Agents , Plant Extracts , Rats , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Rats, Wistar , Antioxidants/pharmacology , Molecular Structure , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Wound Healing , Candida albicans , Tocopherols/pharmacology , Fatty Acids
4.
Sci Rep ; 13(1): 7392, 2023 05 06.
Article En | MEDLINE | ID: mdl-37149706

Vitamin E is classified into tocopherol (Toc) and tocotrienol (T3) based on its side chains. T3 generally has higher cellular uptake than Toc, though the responsible mechanism remains unclear. To elucidate this mechanism, we hypothesized and investigated whether serum albumin is a factor that induces such a difference in the cellular uptake of Toc and T3. Adding bovine serum albumin (BSA) to serum-depleted media increased the cellular uptake of T3 and decreased that of Toc, with varying degrees among α-, ß-, γ-, and δ-analogs. Such enhanced uptake of α-T3 was not observed when cells were incubated under low temperature (the uptake of α-Toc was also reduced), suggesting that Toc and T3 bind to albumin to form a complex that results in differential cellular uptake of vitamin E. Fluorescence quenching study confirmed that vitamin E certainly bound to BSA, and that T3 showed a higher affinity than Toc. Molecular docking further indicated that the differential binding energy of Toc or T3 to BSA is due to the Van der Waals interactions via their side chain. Overall, these results suggested that the affinity of Toc and T3 to albumin differs due to their side chains, causing the difference in their albumin-mediated cellular uptake. Our results give a better mechanistic insight into the physiological action of vitamin E.


Tocopherols , Tocotrienols , Tocopherols/pharmacology , Molecular Docking Simulation , Vitamin E/metabolism , Albumins , Serum Albumin, Bovine
5.
Clin Nutr ESPEN ; 53: 60-73, 2023 02.
Article En | MEDLINE | ID: mdl-36657931

BACKGROUND: Vitamin E has been investigated for its antitumor potential, including the ability to change cancer gene pathways as well as promote antioxidant and pro-oxidant activity. OBJECTIVE: Therefore, this systematic review aimed to evaluate antitumor and chemopreventive activity of different vitamin E isoforms (tocopherols and tocotrienols) through in vitro and in vivo studies. METHOD: The systematic review was registered in PROSPERO (No. CRD4202126207) and the search was carried out in four electronic databases (PubMed, Science Direct, Scopus and Web of Science) in June 2021 by three independent reviewers. The search equation used was: "Supplementation" AND ("Vitamin E" OR Tocopherol OR Tocotrienol) AND "breast cancer" AND (chemotherapy OR therapy OR prevention). In vitro studies and animal models of breast cancer supplemented with tocopherol or tocotrienol vitamers, alone or in combination, were included. RESULTS: The results revealed 8546 relevant studies that were initially identified in our search. After analysis, a total of 12 studies were eligible for this systematic review. All studies included animal models, and 5 of them also performed in vitro experiments on cancer cell lines. The studies performed supplementation with tocopherols, mixtures (tocopherols and tocotrienols) and synthetic vitamin E forms. There was an significant association of estradiol, dendritic cells and pterostilbene in combined therapy with vitamin E. Vitamin E delayed tumor development, reduced tumor size, proliferation, viability, expression of anti-apoptotic and cell proliferation genes, and upregulated pro-apoptotic genes, tumor suppressor genes and increased immune response. The effects on oxidative stress markers and antioxidant activity were conflicting among studies. Only one study with synthetic vitamin E reported cardiotoxicity, but it did not show vitamin E genotoxicity. CONCLUSION: In conclusion, vitamin E isoforms, isolated or associated, showed antitumor and chemopreventive activity. However, due to studies heterogeneity, there is a need for further analysis to establish dose, form, supplementation time and breast cancer stage.


Neoplasms , Tocotrienols , Animals , Vitamin E/pharmacology , Tocotrienols/pharmacology , Tocotrienols/therapeutic use , Antioxidants/pharmacology , Tocopherols/pharmacology , Neoplasms/drug therapy , Vitamins
6.
Molecules ; 28(1)2023 Jan 03.
Article En | MEDLINE | ID: mdl-36615633

Atopic dermatitis is a T-cell mediated inflammatory skin disease with detected elevated levels of histamine in skin or plasma. In this study, the effects of histamine in a TH2 cytokine environment on human keratinocytes and three-dimensional skin models were investigated. These models were used to explore the anti-inflammatory properties of the α-tocopherol-derived long-chain metabolite α-13'-carboxychromanol (α-13'-COOH). Histamine and TH2 cytokine-induced proliferation of keratinocytes was studied using a scratch assay. The inflammatory marker interleukin-8 was significantly increased in healthy and TH2 cytokine-stimulated keratinocytes and skin models after histamine treatment. The incubation of full-thickness skin models with TH2 cytokines and histamine resulted in morphological changes in the epidermal layer, interpreted as hyperkeratosis. α-13'-COOH significantly decreased interleukin-8 in these disease-associated skin models. Histological staining of filaggrin showed skin-strengthening effects following α-13'-COOH treatment, without changes in mRNA expression. Cytokeratin 10 mRNA expression tended to be increased in response to α-13'-COOH. Anti-allergic properties of α-13'-COOH were studied by pre-incubation of human leukocytes with α-13'-COOH. This resulted in reduced sulfido-leukotriene synthesis. The hyperproliferation effect of histamine in atopic dermatitis skin models may be of further interest to the study of disease-associated morphological changes. Moreover, α-13'-COOH is a promising natural compound for the treatment of inflammatory skin diseases.


Dermatitis, Atopic , Humans , Dermatitis, Atopic/metabolism , Histamine/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , alpha-Tocopherol/pharmacology , alpha-Tocopherol/metabolism , Tocopherols/pharmacology , Skin , Keratinocytes , Cytokines/metabolism , RNA, Messenger/metabolism
7.
Biomater Adv ; 145: 213236, 2023 Feb.
Article En | MEDLINE | ID: mdl-36512927

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive form of cancer with a five-year survival rate of around 10 %. CXCR4 and STAT3 display crucial effects on proliferation, metastasis, angiogenesis, and formation of immunosuppressive microenvironment in pancreatic tumors. Here, we have tested the hypothesis that conjugation of α-tocopherol (TOC) to a polycation (PAMD), synthesized from CXCR4-antagonist AMD3100, will improve delivery of therapeutic siRNA to silence STAT3 in PDAC tumors. PAMD-TOC/siSTAT3 nanoparticles showed superior anti-cancer and anti-migration performance compared to the parent PAMD/siSTAT3 nanoparticles in both murine and human PDAC cell lines. The biodistribution of the nanoparticles in orthotropic mouse KPC8060 and human PANC-1 models, indicated that tumor accumulation of PAMD-TOC/siRNA nanoparticles was improved greatly as compared to PAMD/siRNA nanoparticles. This improved cellular uptake, penetration, and tumor accumulation of PAMD-TOC/siSTAT3 nanoparticles, also contributed to the suppression of tumor growth, metastasis and improved survival. Overall, this study presents a prospective treatment strategy for PDAC.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Mice , Animals , RNA, Small Interfering/genetics , Tocopherols/pharmacology , Tocopherols/therapeutic use , Tissue Distribution , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Tumor Microenvironment
8.
Pak J Pharm Sci ; 35(4): 1089-1094, 2022 Jul.
Article En | MEDLINE | ID: mdl-36008906

Millions of the people worldwide are drinking arsenic polluted water. The need of time is to find out the mitigation strategies to cope with this issue. To evaluate the effects of tocopherol and ubiquinol individually and collectively on arsenic induced nephrotoxicity in Sprague Dawley rats. 150 Sprague Dawley rats were divided into 5 groups randomly. Animals of group I were provided with distilled water and sterile diet pellets. All other groups were given arsenic contaminated water (5mg/L) ad libitum. Moreover, ubiquinol and tocopherol (250mg/kg each) were given to group III and IV rats respectively. Whereas, both tocopherol and ubiquinol (125mg/kg each) was given to rats of group V. After 2 weeks of intervention period, serum RFTs were evaluated on micro lab. After exposure to arsenic, animals of group II showed a significant (p<0.01) elevation of serum RFTs. Treatment with ubiquinol in group III animals and tocopherol in group IV animals reduced the levels (p<0.01) of serum RFTs in these groups. Whereas, the combined effects of both these antioxidants reversed these changes to normal values (p>0.05). Both tocopherol and ubiquinol (synergistically) are more efficient in minimizing the nephrotoxicity induced by arsenic.


Arsenic , Tocopherols , Animals , Antioxidants/pharmacology , Arsenic/toxicity , Rats , Rats, Sprague-Dawley , Tocopherols/pharmacology , Ubiquinone/analogs & derivatives , Vitamin E , Water
9.
Biomolecules ; 12(8)2022 08 07.
Article En | MEDLINE | ID: mdl-36008981

Prolonged elevated oxidative stress (OS) possesses negative effect on cell structure and functioning, and is associated with the development of numerous disorders. Naturally occurred anti-oxidant compounds reduce the oxidative stress in living organisms. In this review, antioxidant properties of ß-carotene, tocopherols and ascorbic acid are presented based on in vitro, in vivo and populational studies. Firstly, environmental factors contributing to the OS occurrence and intracellular sources of Reactive Oxygen Species (ROS) generation, as well as ROS-mediated cellular structure degradation, are introduced. Secondly, enzymatic and non-enzymatic mechanism of anti-oxidant defence against OS development, is presented. Furthermore, ROS-preventing mechanisms and effectiveness of ß-carotene, tocopherols and ascorbic acid as anti-oxidants are summarized, based on studies where different ROS-generating (oxidizing) agents are used. Oxidative stress biomarkers, as indicators on OS level and prevention by anti-oxidant supplementation, are presented with a focus on the methods (spectrophotometric, fluorometric, chromatographic, immuno-enzymatic) of their detection. Finally, the application of Raman spectroscopy and imaging as a tool for monitoring the effect of anti-oxidant (ß-carotene, ascorbic acid) on cell structure and metabolism, is proposed. Literature data gathered suggest that ß-carotene, tocopherols and ascorbic acid possess potential to mitigate oxidative stress in various biological systems. Moreover, Raman spectroscopy and imaging can be a valuable technique to study the effect of oxidative stress and anti-oxidant molecules in cell studies.


Antioxidants , Ascorbic Acid , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Humans , Oxidants/pharmacology , Oxidative Stress , Reactive Oxygen Species/metabolism , Research Design , Tocopherols/pharmacology , beta Carotene/metabolism , beta Carotene/pharmacology
10.
Niger J Physiol Sci ; 37(1): 83-92, 2022 Jun 30.
Article En | MEDLINE | ID: mdl-35947839

Arsenic compromises the gastrointestinal integrity and function via the body's anti-oxidative system breakdown.  Hence, this study aimed to investigate the effects of tocopherol on redox imbalance and histoarchitectural alterations in rats' gastrointestinal tract exposed to sodium arsenite. Sodium arsenite and graded doses of tocopherol were administered orally into experimental rats assigned to different groups for four weeks concurrently. Redox status assay was done in homogenized samples by spectrophotometry. Parietal cell mass and mucous cell density (stomach), villus height and crypt depth (ileum), goblet cells count, and crypt depth (colon) were evaluated by histomorphometry. Inflammatory cells infiltration was also assessed using a semi-quantitative procedure. Sodium arsenite caused a significant increase in Malondialdehyde and Myeloperoxidase but, decreased Superoxide dismutase, Catalase, Nitric oxide, Glutathione peroxidase, Glutathione, and Glutathione-S-Transferase. Tocopherol treatment reversed the changes (p<0.05) though not largely dose-dependent. Furthermore, tocopherol annulled sodium arsenite-induced increase in parietal cell mass and decrease in mucous cell density in the stomach, decrease in villus height and villus height/crypt depth ratio in the ileum, and decrease in goblets cells and increase in crypt depth in the colon. Moreover, activated inflammatory cell infiltration by sodium arsenite was mitigated by tocopherol. Sodium arsenite provokes not only marked inflammatory cellular infiltration but a focal loss of glands, hyperplasia of crypts, atrophic villi, and hypertrophy of Peyer's patches in the intestines, which are all lessened with tocopherol treatment.  These findings underscore the anti-oxidative properties of tocopherol as a potent dietary factor against sodium arsenite toxicity in the gastrointestinal tract. Keywords: Tocopherol, arsenic, stomach, ileum, colon.


Arsenic , Arsenites , Animals , Antioxidants/therapeutic use , Arsenic/metabolism , Arsenic/pharmacology , Arsenites/toxicity , Gastrointestinal Tract , Glutathione/metabolism , Oxidative Stress , Rats , Sodium Compounds/toxicity , Superoxide Dismutase/metabolism , Tocopherols/metabolism , Tocopherols/pharmacology , Vitamin E/pharmacology
11.
Molecules ; 27(7)2022 Mar 28.
Article En | MEDLINE | ID: mdl-35408581

Cisplatin (CP) is a conventional chemotherapeutic agent with serious adverse effects. Its toxicity was linked to the stimulation of oxidative stress and inflammation. As a result, this study explored the protective effect of baicalein and alpha-tocopherol in nephrotoxicity induced by cisplatin. Until receiving an intraperitoneal injection of CP (3 mg/kg BW), rats were given baicalein orally 100 mg/kg for seven days or/and a single intraperitoneal injection of α-tocopherol 250 mg/kg. Renal function was tested to explore whether baicalein and α-tocopherol have any beneficial effects; blood urea nitrogen (BUN), serum creatinine, malondialdehyde (MDA) content, antioxidant activity biomarkers and histopathology of renal tissue, oxidative stress biomarkers, inflammatory response markers, and histopathological features of kidney architecture were measured. Cisplatin treatment resulted in extreme renal failure, as measured by high serum creatinine and BUN levels and severe renal changes. Cisplatin therapy resulted in increased lipid peroxidation and decreased glutathione and superoxide dismutase levels, reflecting oxidative stress. Upon treatment with α-tocopherol, baicalein, and combined therapy, there was augmentation in the antioxidant status as well as a reduction in IL-6, NF-κB, TNF, TLR2, and TLR4 and a significant increase in Keap-1 and NRF-2. The combined treatment was the most effective and the nearest to the normal status. These findings suggest that baicalein and α-tocopherol may be useful in preventing cisplatin-induced nephrotoxicity.


Antineoplastic Agents , Renal Insufficiency , Animals , Antineoplastic Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Biomarkers/metabolism , Blood Urea Nitrogen , Cisplatin/pharmacology , Creatinine/metabolism , Flavanones , Kidney , Oxidative Stress , Rats , Renal Insufficiency/metabolism , Renal Insufficiency/pathology , Tocopherols/pharmacology , Toll-Like Receptors/metabolism , alpha-Tocopherol/metabolism , alpha-Tocopherol/pharmacology
12.
Int J Mol Sci ; 23(3)2022 Feb 03.
Article En | MEDLINE | ID: mdl-35163672

Despite the use of intensive multimodality therapy, the majority of high-risk neuroblastoma (NB) patients do not survive. Without significant improvements in delivery strategies, anticancer agents used as a first-line treatment for high-risk tumors often fail to provide clinically meaningful results in the settings of disseminated, recurrent, or refractory disease. By enhancing pharmacological selectivity, favorably shifting biodistribution, strengthening tumor cell killing potency, and overcoming drug resistance, nanocarrier-mediated delivery of topoisomerase I inhibitors of the camptothecin family has the potential to dramatically improve treatment efficacy and minimize side effects. In this study, a structurally enhanced camptothecin analog, SN22, reversibly coupled with a redox-silent tocol derivative (tocopheryl oxamate) to allow its optimally stable encapsulation and controlled release from PEGylated sub-100 nm nanoparticles (NP), exhibited strong NB cell growth inhibitory activity, translating into rapid regression and durably suppressed regrowth of orthotopic, MYCN-amplified NB tumors. The robust antitumor effects and markedly extended survival achieved in preclinical models recapitulating different phases of high-risk disease (at diagnosis vs. at relapse with an acquired loss of p53 function after intensive multiagent chemotherapy) demonstrate remarkable potential of SN22 delivered in the form of a hydrolytically cleavable superhydrophobic prodrug encapsulated in biodegradable nanocarriers as an experimental strategy for treating refractory solid tumors in high-risk cancer patients.


Camptothecin/analogs & derivatives , Drug Carriers/chemistry , Drug Delivery Systems , Nanoparticles/chemistry , Neuroblastoma/drug therapy , Prodrugs/therapeutic use , Tocopherols/therapeutic use , Camptothecin/chemistry , Camptothecin/pharmacology , Camptothecin/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Neuroblastoma/pathology , Risk Factors , Survival Analysis , Tocopherols/pharmacology , Xenograft Model Antitumor Assays
13.
Int J Mol Sci ; 23(2)2022 Jan 06.
Article En | MEDLINE | ID: mdl-35054770

Natural substances have traditionally been used in skin care for centuries. There is now an ongoing search for new natural bioactives that not only promote skin health but also protect the skin against various harmful factors, including ultraviolet radiation and free radicals. Free radicals, by disrupting defence and restoration mechanisms, significantly contribute to skin damage and accelerate ageing. Natural compounds present in plants exhibit antioxidant properties and the ability to scavenge free radicals. The increased interest in plant chemistry is linked to the growing interest in plant materials as natural antioxidants. This review focuses on aromatic and medicinal plants as a source of antioxidant substances, such as polyphenols, tocopherols, carotenoids, ascorbic acid, and macromolecules (including polysaccharides and peptides) as well as components of essential oils, and their role in skin health and the ageing process.


Aging , Antioxidants/pharmacology , Phytochemicals/pharmacology , Skin/physiopathology , Animals , Ascorbic Acid/pharmacology , Carotenoids/pharmacology , Humans , Oxidative Stress , Polyphenols/pharmacology , Skin/drug effects , Skin/metabolism , Tocopherols/pharmacology
14.
J Nutr Biochem ; 100: 108884, 2022 02.
Article En | MEDLINE | ID: mdl-34710615

Cyclooxygenase (COX-1 and COX-2)- and 5-lipoxygenase (5-LOX)-catalyzed biosynthesis of eicosanoids play important roles in inflammation and chronic diseases. The vitamin E family has four tocopherols and tocotrienols. We have shown that the metabolites of δ-tocopherol (δT) and δ-tocotrienol (δTE), i.e., δT-13'-carboxychromanol (COOH) and δTE-13'-COOH, respectively, inhibit COX-1/-2 and 5-LOX activity, but the nature of how they inhibit 5-LOX is not clear. Further, the impact of tocopherols and tocotrienols on COX-1/-2 or 5-LOX activity has not been fully delineated. In this study, we found that tocopherols and tocotrienols inhibited human recombinant COX-1 with IC50s of 1-12 µM, and suppressed COX-1-mediated formation of thromboxane in collagen-stimulated rat's platelets with IC50s of 8-50 µM. None of the vitamin E forms directly inhibited COX-2 activity. 13'-COOHs inhibited COX-1 and COX-2 enzyme activity with IC50s of 3-4 and 4-10 µM, respectively, blocked thromboxane formation in collagen- and ionophore-stimulated rats' platelets with IC50s of 1.5-2.5 µM, and also inhibited COX-2-mediated prostaglandins in stimulated cells. Using enzyme kinetics, we observed that δT-13'-COOH, δTE-13'-COOH and δTE competitively inhibited 5-LOX activity with Ki of 1.6, 0.8 and 2.2 µM, respectively. These compounds decreased leukotriene B4 from stimulated neutrophil-like cells without affecting translocation of 5-LOX from cytosol to the nucleus. Our study reveals inhibitory effects of vitamin E forms and 13'-COOHs on COX-1 activity and thromboxane formation in platelets, and elucidates mechanisms underlying their inhibition of 5-LOX. These observations are useful for understanding the role of these compounds in disease prevention and therapy.


Arachidonate 5-Lipoxygenase/metabolism , Benzopyrans/pharmacology , Blood Platelets/metabolism , Cyclooxygenase 1/metabolism , Fatty Acids/pharmacology , Thromboxanes/blood , Tocotrienols/pharmacology , Vitamin E/pharmacology , A549 Cells , Animals , Blood Platelets/drug effects , Cyclooxygenase 2/metabolism , Cyclooxygenase Inhibitors/pharmacology , Humans , Lipoxygenase Inhibitors/pharmacology , Mice , RAW 264.7 Cells , Tocopherols/pharmacology , Vitamin E/metabolism , Vitamins/pharmacology
15.
Methods Mol Biol ; 2343: 241-246, 2022.
Article En | MEDLINE | ID: mdl-34473327

Electrochemical biosensors offer a sensitive, specific, and rapid detection platform for in situ real-time monitoring of intracellular and extracellular metabolites. These sensors have been widely used to evaluate the efficacy of preclinical drugs, especially for natural products with antioxidant potency. Ultraviolet (UV) radiation causes oxidative stress in cells and induces cells to release reactive oxygen species. Tocopherol is a fat-soluble vitamin found in vegetable oils as well as in grains, seeds, and nuts, which plays an important protective role as an antioxidant in resisting oxidative stress caused by UV radiation. Here, we describe a protocol using a glass carbon electrode functionalized with nanotube@DNA-Mn3(PO4)2 composite to monitor and quantify the production of superoxide ions in UV-irradiated melanoma cells in the presence or absence of tocopherol. This study demonstrates the advantages and potential application of label-free electrochemical sensors in the measurement of natural antioxidants from plant materials.


Antioxidants , Biosensing Techniques , Tocopherols , Antioxidants/metabolism , Oxidative Stress , Tocopherols/pharmacology , Ultraviolet Rays , Vitamin E
16.
Nutr Cancer ; 74(4): 1163-1170, 2022.
Article En | MEDLINE | ID: mdl-34278890

Vitamin E, which is actually a mixture of eight isoforms (four tocopherols and four tocotrienols), is a powerful antioxidant that protects polyunsaturated fatty acids against oxidation and has the ability to break the chain lipid peroxidation, which is used in the treatment of heart disease, atherosclerosis, muscle disorders or infertility among men. Studies in-vitro show that one of the effects of tocopherol is the reduction of cancer stem cell activity which is connected to poor clinical course. In the scientific literature, reports on the participation of vitamin E not only in protection against the mutagenic effects of reactive oxygen species, but also in its anti-angiogenic activity and the ability to inhibit the invasion and metastasis of neoplastic cells are increasingly common. In this context, the role of vitamin E in preventing the neoplastic process and selected malignant neoplasms among women seems to be of particular interest. In this article, we present the results of research on the potential anticancer effects of vitamin E in the fight against breast, cervical, endometrial and ovarian cancer.


Neoplasms , Tocotrienols , Antioxidants/pharmacology , Antioxidants/therapeutic use , Female , Humans , Male , Neoplasms/drug therapy , Tocopherols/pharmacology , Tocotrienols/pharmacology , Vitamin E/pharmacology
17.
Drug Chem Toxicol ; 45(4): 1587-1596, 2022 Jul.
Article En | MEDLINE | ID: mdl-33213213

Arylamines and polycyclic aromatic hydrocarbons (PAHs) are hazardous anthropogenic pollutants in the environment. The toxicity of PAHs, which include benzo(α)pyrene (BP), is mediated by the activation of Р450 cytochromes of the 1А subfamily (CYP1A1 and CYP1A2). Previously, we have demonstrated that tocopherol, quercetin, and menadione inhibit the expression and activity of CYP1A in the liver of male Wistar rats after administration of a high BP dose to the rats for 3 days. Here, we confirmed the effects of tocopherol, quercetin, and menadione on the expression and activity of CYP1A and on rat liver morphology during prolonged administration (90 days) of a low BP dose. We revealed that subchronic oral administration of a low BP dose has no influence on CYP1A expression as compared to controls but can cause pathomorphological changes in rat liver tissue. These changes are abrogated by tocopherol, attenuated by quercetin, and enhanced by menadione.


Benzo(a)pyrene , Cytochrome P-450 CYP1A1 , Liver , Quercetin , Tocopherols , Vitamin K 3 , Animals , Benzo(a)pyrene/toxicity , Cytochrome P-450 CYP1A1/genetics , Liver/drug effects , Male , Polycyclic Aromatic Hydrocarbons/toxicity , Quercetin/pharmacology , Rats , Rats, Wistar , Tocopherols/pharmacology , Vitamin K 3/pharmacology
18.
Molecules ; 26(18)2021 Sep 21.
Article En | MEDLINE | ID: mdl-34577176

Percutaneous coronary intervention (PCI) has long remained the gold standard therapy to restore coronary blood flow after acute myocardial infarction (AMI). However, this procedure leads to the development of increased production of reactive oxygen species (ROS) that can exacerbate the damage caused by AMI, particularly during the reperfusion phase. Numerous attempts based on antioxidant treatments, aimed to reduce the oxidative injury of cardiac tissue, have failed in achieving an effective therapy for these patients. Among these studies, results derived from the use of vitamin C (Vit C) have been inconclusive so far, likely due to suboptimal study designs, misinterpretations, and the erroneous conclusions of clinical trials. Nevertheless, recent clinical trials have shown that the intravenous infusion of Vit C prior to PCI-reduced cardiac injury biomarkers, as well as inflammatory biomarkers and ROS production. In addition, improvements of functional parameters, such as left ventricular ejection fraction (LVEF) and telediastolic left ventricular volume, showed a trend but had an inconclusive association with Vit C. Therefore, it seems reasonable that these beneficial effects could be further enhanced by the association with other antioxidant agents. Indeed, the complexity and the multifactorial nature of the mechanism of injury occurring in AMI demands multitarget agents to reach an enhancement of the expected cardioprotection, a paradigm needing to be demonstrated. The present review provides data supporting the view that an intravenous infusion containing combined safe antioxidants could be a suitable strategy to reduce cardiac injury, thus improving the clinical outcome, life quality, and life expectancy of patients subjected to PCI following AMI.


Antioxidants/chemistry , Ascorbic Acid/chemistry , Myocardial Infarction/metabolism , Protective Agents/chemistry , Reperfusion Injury/drug therapy , Acetylcysteine/pharmacology , Animals , Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Biomarkers/metabolism , Deferoxamine/pharmacology , Dose-Response Relationship, Drug , Drug Synergism , Female , Humans , Male , Oxidative Stress/physiology , Percutaneous Coronary Intervention , Polyphenols/pharmacology , Protective Agents/pharmacology , Reactive Oxygen Species/metabolism , Reperfusion Injury/metabolism , Signal Transduction , Stroke Volume/physiology , Tocopherols/chemistry , Tocopherols/pharmacology , Ventricular Function, Left/physiology
19.
J Oleo Sci ; 70(9): 1307-1315, 2021 Sep 04.
Article En | MEDLINE | ID: mdl-34373409

The study aim was to evaluate the potential anti-inflammatory effects of vitamin E analogs, especially α-tocopherol and δ-tocopherol. We used male C57BL/6JJcl mice, which were divided into four groups: the control (C), high-fat and high-sucrose diet (H), high-fat and high-sucrose diet+α-tocopherol (Ha) and high-fat and high-sucrose diet+δ-tocopherol (Hd) groups. The mice were fed for 16 weeks. To the high-fat and high-sucrose diet, 800 mg/kg of α-tocopherol or δ-tocopherol was added more. The final body weight was significantly higher in the H group than in the C group. On the other hand, the final body weight was drastically lower in the Ha group and Hd group than in the H group. However, the energy intake was not significantly different among all groups. Therefore, we assumed that α-tocopherol and δ-tocopherol have potential anti-obesity effect. Besides, inflammatory cytokine gene expression was significantly higher in the epididymal fat of the H group than in the C group. These results showed that inflammation was induced by epididymal fat of mice fed a high-fat and high-sucrose diet for 16 weeks. Unfortunately, addition of α-tocopherol or δ-tocopherol to the diet did not restrain inflammation of epididymal fat. Investigation of the anti-inflammatory effects of α-tocopherol or δ-tocopherol in co-cultured 3T3-L1 cells and RAW264.7 cells showed that δ-tocopherol inhibited increased gene expression of the inflammatory cytokines, IL-1ß, IL-6, and iNOS. These results suggest that an anti-inflammatory effect in the δ-tocopherol is stronger than that in the α-tocopherol in vitro. We intend to perform an experiment by in vivo sequentially in the future.


Adipocytes/drug effects , Adipose Tissue/drug effects , Inflammation/drug therapy , Tocopherols/pharmacology , 3T3-L1 Cells , Adipocytes/metabolism , Adipose Tissue/metabolism , Animals , Anti-Inflammatory Agents , Anti-Obesity Agents , Body Weight/drug effects , Diet, High-Fat/adverse effects , Dietary Sucrose/adverse effects , Gene Expression/drug effects , Inflammation/etiology , Inflammation/genetics , Inflammation Mediators/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Male , Mice , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , RAW 264.7 Cells , Tocopherols/therapeutic use , alpha-Tocopherol/pharmacology , alpha-Tocopherol/therapeutic use
20.
Malar J ; 20(1): 280, 2021 Jun 24.
Article En | MEDLINE | ID: mdl-34167535

BACKGROUND: Malaria parasites are known to be vulnerable to oxidative stress. In this study, the effects of the administration of α-tocopheryloxy acetic acid (α-TEA), which is a vitamin E analogue mitocan, on Plasmodium yoelii infection in mice were examined. METHODS: Alpha-TEA was mixed with diet and fed to C57BL/6J mice before and/or after infection. For parasite infection, 4 × 104 red blood cells infected with P. yoelii (strain 17XL) were inoculated by intraperitoneal injection. In another series of experiment, the effect of the oral administration of α-TEA on P. yoelii 17XL infection in mice was examined. Finally, the combined effect of α-TEA and dihydroartemisinin or chloroquine on P. yoelii 17XL infection was examined. RESULTS: When 0.25% α-TEA was mixed with the diet for 7 days before infection and 14 days after infection (in total for 21 days), for 14 days after infection, and for 11 days from the third day after infection, all P. yoelii 17XL-infected mice survived during the observation period. However, all control mice died within 12 days after infection. These results indicated that α-TEA functions effectively even when administered post-infection. The oral administration of α-TEA for P. yoelii 17XL infection was also significant. Although the infected mice in the solvent control died within 10 days after infection, 90% of the mice infected with P. yoelii 17XL survived during the observation period when treated with 10 mg/head/day of α-TEA for 3 days from day 3 after infection. Although the combined effect of α-TEA and dihydroartemisinin (DHA) or chloroquine on P. yoelii 17XL infection was significant, no synergistic or additive effects were observed from the survival curve. CONCLUSIONS: This study showed the beneficial effects of α-TEA on the experimental infection of mice with P. yoelii 17XL. The stimulatory action of α-TEA on mitochondria and the accompanying reactions, such as reactive oxygen species production, and induction of apoptosis might have some effect on malarial infection.


Antimalarials/pharmacology , Artemisinins/pharmacology , Chloroquine/pharmacology , Plasmodium yoelii/drug effects , Tocopherols/pharmacology , Administration, Oral , Animals , Drug Combinations , Drug Therapy, Combination , Injections, Intraperitoneal , Malaria/drug therapy , Mice , Mice, Inbred C57BL
...